Analytical Chemistry Nanotechnology Biochemistry Polymers Plastics Metal-Organic Frameworks Nanomaterials Metals Polymer Chemistry Rare Earth Elements Catalysis Battery Chemistry Inorganic Chemistry Battery Technology Ligands Silicones Polymer Science Electrochemistry Metallurgy Separation Techniques Polymer Engineering Polymer Physics Photoresponsive Materials Photovoltaics Photostability Piezoelectricity Combustion Chemistry Small-Molecule Catalysts Porous Liquids Aromatic Compounds Carbon Capture Materials Carbon Absorption Catalytic Materials Lithium Compounds Polyvinyl Acetate Biomaterials Molecular Machines Fire Retardants Reactive Materials Rare Earth Metals Electrocatalysts Moisture Battery Materials Carbon Nitride Diamond Quantum Computing Lab Testing Stable Materials Interfaces Zeolites Crystalline Materials 3D Printing Protective Coatings Nanoparticles Porous Materials Nanosheets Resins Photocatalysis Electrode Materials Tire Compounds Ultrafast Imaging Nanoscale Control Sustainable Energy Nanofibrils Magnetic Materials Carbon Materials Solid Electrolytes Thermal Conductivity Carbon Nanotubes Catalysts 2D Materials Diamond Synthesis Hydride Compounds Organic Chemistry Polymer Electrolytes Cement Tungsten Disulphide Colloidal Particles Other Glass Properties Glassy Gels Ionic Liquids Polymer Mixtures Electret Materials Encapsulation Decomposition Phosphorescent Materials Surface Tension Quantum Chemistry Hydrogel Technology Bioelectronics Spectroscopy Pigments
CNRS researchers unveil a gallium-catalyzed chemical process that depolymerizes silicone waste into high-purity chlorosilane monomers, enabling infinite reuse while reducing environmental impacts.